default | grid-3 | grid-2

Post per Page

We Finally Know How Black Holes Produce The Most Brilliant Light in The Universe

Black holes simply like engulfing themselves in brightness, which is amazing considering that they cannot be seen to generate any light.

Supermassive black holes in reality produce some of the universe's brightest light. The matter surrounding black holes, which actively slurp down enormous amounts of matter from their immediate surroundings, is what causes the problem, not the black holes themselves.

Blazar galaxies are some of these hot, swirling, maelstrom-like masses that are brightest. They emit electromagnetic radiation at energies that are difficult to comprehend, and in addition to glowing with the heat of a swirling coat, they can also channel material into "blazing" beams that travel through space.

The mechanism causing the extraordinary high-energy light that reached Earth billions of years ago has finally been identified by scientists: shocks in the black hole's jets that cause particles to travel at incredible speeds.


According to astronomer Yannis Liodakis of the Finnish Centre for Astronomy with ESO, "We have solved a 40-year-old mystery." "The picture they painted was clear when we finally had all the pieces of the puzzle,"

A supermassive black hole is the centre of the vast majority of galaxies in the universe. These enormous celestial bodies are located in the galactic core, where they occasionally perform relatively little work (like Sagittarius A*, the Milky Way's central black hole), and occasionally perform a great deal.


That action entails the accumulation of matter. A huge cloud forms an equatorial disc that encircles the black hole like water does a drain. This material heats up and shines brightly across a range of wavelengths due to the frictional and gravitational interactions at work in the extreme space surrounding a black hole. That is one place where a black hole gets its light.

The other, which also occurs in blazars, is a pair of material jets that are fired perpendicular to the disc from the polar regions outside the black hole. These jets are believed to be made of material from the inner rim of the disc that, rather than collapsing into the black hole, is propelled to the poles by acceleration along lines of the external magnetic field at speeds that are almost as fast as light.


These jets must be almost directly pointed at the observer for a galaxy to be categorised as a blazar. We are that on Earth. They emit light across the electromagnetic spectrum, including high-energy gamma- and X-rays, as a result of the extreme particle acceleration.

For many years, it has been unclear exactly how this jet accelerates the particles to such high speeds. But now, scientists have the solution thanks to the Imaging X-ray Polarimetry Explorer (IXPE), a potent new X-ray telescope that was launched in December 2021. It is the first space telescope to show how X-rays are oriented, or polarized.

According to astronomer Immacolata Donnarumma of the Italian Space Agency, "the first X-ray polarisation measurements of this class of sources allowed, for the first time, a direct comparison with the models developed from observing other frequencies of light, from radio to very high-energy gamma rays."

IXPE was pointed at the Markarian 501 blazar, which is 460 million light-years away in the constellation of Hercules and is the brightest high-energy object in our sky. The telescope recorded data on the X-ray light emitted by the blazar's jet for a total of six days in March 2022.


IXPE is seen viewing Markarian 501 in this picture, with light progressively losing energy as it gets further away from the shock front. 

The light from other wavelength ranges, from radio to optical, was being measured simultaneously by other observatories, which were previously the only sources of information for Markarian 501.

The group picked up on a strange change in the X-ray light right away. Compared to the lower-energy wavelengths, its polarisation was noticeably more twisted. And radio frequencies were less polarised than optical light.


However, the polarization's orientation was consistent across all wavelengths and coincided with the jet's path. The team discovered that this is in line with models in which shocks in the jets result in shockwaves that give the jet additional acceleration along its length. This acceleration is greatest right before the shock, which results in X-radiation. The particles lose energy as they travel further along the jet, producing lower-energy optical and later radio emission with less polarization.

According to astronomer Alan Marscher of Boston University, "when the shock wave penetrates the region, the magnetic field increases stronger and the energy of particles gets higher." "The substance creating the shock wave's motion energy is where the energy originates from."


The cause of the shocks is unknown, but one potential mechanism is that faster jet material catches up to slower-moving clumps, causing collisions. Future investigation might support this theory.

This study adds a significant piece to the puzzle because blazars are among the Universe's most potent particle accelerators and one of the best laboratories for studying extreme physics.


In the future, observations of Markarian 501 will continue, and IXPE will be directed to other blazars to see if similar polarisation can be found.


The study was released in the journal Nature Astronomy.

No comments

Error Page Image

Error Page Image

Oooops.... Could not find it!!!

The page you were looking for, could not be found. You may have typed the address incorrectly or you may have used an outdated link.

Go to Homepage